

Revision of Algebra

- 1. Solve for x: $\frac{1}{x} \frac{1}{4} = \frac{1}{x+2}$ (Revise)
- 2. Simplify: $x\sqrt{4 + \frac{12}{x} + \frac{9}{x^2}}$
- 3. Simplify the following expressions:

(a)
$$\frac{3}{x+5} - \frac{2}{x+7} + \frac{1}{2}$$

(b) $\frac{5}{x} + \frac{1}{x^2+3x} - \frac{2}{x+3}$ (Revise)

- 4. Use algebraic long division to find the three factors of $x^3 + 6x^2 + 12x + 8$ (Revise) Hence, or otherwise, simplify the expression $x\sqrt[3]{1 + \frac{6}{x} + \frac{12}{x^2} + \frac{8}{x^3}}$
- 5. If $x = \frac{2}{3}$ and x = -2 are roots of the equation $ax^2 + bx 4 = 0$, find the value of a and b.
- 6. Solve the following system of equations: $\begin{aligned} x + y + 2z &= 7 \\ 3x + 2y - z &= 1 \\ 2x - 3y + z &= 10 \end{aligned}$ (Revise)
- 7. Solve for $x: \sqrt{4x+9} = \sqrt{2x+1} + 2$ (Revise)
- 8. Solve for $x: \frac{12}{x+1} 4 = \frac{3}{2x-9}$ (Revise)
- 9. Solve for x and y: x + y = 5 $x^2 + xy + y^2 = 19$ (Revise)
- 10. If (x 2) and (x + 1) are factors of the expression $x^3 + px^2 + qx 6$, find the value of p and q. Hence find the third factor of the expression. (Revise)
- 11. Solve for $x: \sqrt{3x+4} 3 = \sqrt{x-3}$ (Revise)

12. Solve the following system of equations: T_{r}

$$\frac{x}{3} + \frac{y}{2} + z = 5$$

$$x + \frac{y}{4} + \frac{z}{3} = 4$$

$$\frac{x}{2} - y + \frac{3z}{4} = 10$$
 (Revise)

- 13. Solve the equation: $9(3^{x^2}) = 27^x$ (Revise)
- 14. Solve the following system of equations: 2x + 3y = -1 $x^2 + 2xy + y^2 = 1$ (Revise)
- 15. If (x+3) and (x-2) are factors of the expression $ax^3 + bx^2 15x + 18$, find the value of a and b. Hence solve the equation $ax^3 + bx^2 + -15x + 18 = 0$ (Revise)
- 16. Solve each of the following equations for the correct range of values of x: (Revise)

(a) i.
$$x^{2} + 2x - 15 > 0$$

ii. $18 - 25x \ge 3x^{2}$
iii. $x^{2} - 9 < 0$
iv. $x^{2} > 5x$
(b) i. $\frac{x+1}{x-2} < 2, \quad x \ne 2$
ii. $\frac{1-2x}{x-4} \le -\frac{3}{4}, \quad x \ne 4$
(c) i. $|2x+1| < 3$
ii. $|x-1| \ge 2|x+2|$
iii. $|3x+2| > \frac{5}{2}$

- 17. Solve the equation: $\log_2 x + \log_2(x-2) = 3$ (Revise)
- 18. Show that $x^2 10x + 30 \ge 0$ for all $x \in R$. (Revise)
- 19. If $(x-3)^2$ is a factor of $x^3 + ax^2 15x + b$, find the values of a and b. (Revise) Hence solve the equation $x^3 + ax^2 - 15x + b = 0$

20. Solve the equation:
$$\frac{2^{x^2}}{64} = 2^x$$
 (Revise)

- 21. Solve the following equations:
 - i. $2\log x = \log 2 + \log(4 x)$
 - ii. $\log_2(x-3) + \log_2(x-1) = 3$ (Revise)
- 22. By letting $2^x = y$, repesent the following equations in terms of y. Then solve each equation fully for the correct values of x.

i. $2^{2x} - 17(2^x) + 16 = 0$

- ii. $2^{2x+3} 33(2^x) + 4 = 0$ (Revise)
- 23. $x^2 + ax + b$ is a factor of $px^3 + 3apx^2 + 2bpx + c$. Show that:

•
$$b = 2a^2$$

• $4a^3 = \frac{c}{p}$

- 24. Show that $2x^2 7x + 10 \ge 0$ for all $x \in R$
- 25. Let $\log_2 3 = a$ and $\log_2 5 = b$. Express the following in terms of a and b.
 - i. $\log_2\left(\frac{3}{5}\right)$
 - ii. $\log_2 15$
 - iii. $\log_2 9$
 - iv. $\log_2 25$

v.
$$\log_2\left(\frac{27}{25}\right)$$

vi. $\log_2\sqrt{15}$

26. By letting $3^x = y$, repesent the following equation in terms of y. $3^{x+1} + 3^{2-x} = 28$

Then solve the equation fully for the correct value of x.

