

Logs

- 1. Calculate the value of the following logs, without using a calculator:
 - (a) $\log_3 9$
 - (b) $\log_2 8$
 - (c) $\log_2 32$
 - (d) $\log_3 27$
 - (e) $\log_{10} 10000$
 - $(f) \log_4 8$
 - (g) $\log_{125} 625$
 - (h) log₉ 27
 - (i) log₈ 2
 - (j) $\log_{32} 16$
- 2. Solve each of the following equations for x, using indices:
 - (a) $\log_{27} 9 = x$
 - (b) $\log_8 16 = x$
 - (c) $\log_{\frac{1}{2}} 4 = x$
 - (d) $\log_{\frac{1}{5}} 5 = x$
 - (e) $\log_{\frac{1}{3}} 27 = x$
 - (f) $\log_8 \sqrt{2} = x$
 - $(g) \log_{\sqrt{3}} \frac{1}{9} = x$
 - (h) $\log_x 16 = 2$
 - (i) $\log_3 x = 4$
- 3. Simplify the following expressions, representing them without logs:
 - (a) $\log_6 4 + \log_6 9$
 - (b) $\log_4 2 + \log_4 8 + \log_4 4$
 - (c) $\log_6 72 \log_6 12$
 - (d) $\log_5 250 \log_5 2$
 - (e) $\log_2 48 \log_2 2 \log_2 3$

- (f) $2\log_3 6 \log_3 4$
- (g) $\log_2 54 3\log_2 3$
- (h) $2\log_5 10 2\log_5 2$
- 4. Given that $\log_3 2 = a$ and $\log_3 5 = b$, express the following in terms of a and b:
 - i. $\log_3 10$
 - ii. $\log_3 20$
 - iii. $\log_3 \frac{5}{2}$
 - iv. $\log_3 50$
 - v. $\log_3 100$
 - vi. $\log_3 \frac{25}{8}$
 - vii. $\log_3 \frac{5}{\sqrt{2}}$
 - viii. $\log_3 \frac{\sqrt{5}}{8}$
 - ix. $\log_3 15$
 - $x. \log_3 60$
 - xi. $\log_3 \frac{6}{5}$
 - xii. $\log_3 \sqrt[3]{30}$

Solve the following equations for x:

- 5. $\log_3(2x+5)=2$
- 6. $\log_2(x+7) = -1$
- 7. $\log_2 x + \log_2(x+2) = 3$
- 8. $\log_3(10x) \log_3(x+1) = 2$
- 9. $2\log_5 x \log_5(x-1) = \log_5 4$
- 10. $2\log_7 x \log_7 2 = \log_7 32$
- 11. $\log_2(x+1) = 2\log_2(x+2) \log_2(x+5)$
- 12. $2\log_6(x-2) = 2$
- 13. $\log_9 x + \log_9 (x 2) = \frac{1}{2}$
- 14. $\log(7x 6) 2\log x = \log 2$

Solve the following pairs of equations for x and y:

- 15. $\log_2(3x 2y) = 2$ and $\log_3(x + 2y) = \log_3 4$
- 16. $\log_2(x+y) = 0$ and $\log_2(2x+y) = 2$
- 17. $\log_4 x + \log_4 y = \frac{1}{2}$ and $\log_5(x+y) = \log_5 3$
- 18. $\log_2 4 \log_2 x = \log_2(x+y)$ and $\log_{16} 2 + \log_{16}(x+y) = \frac{3}{4}$

Solve the following equations for x:

19. i.
$$5^x = 20$$

ii.
$$3^x = 100$$

iii.
$$10^x = 50$$

iv.
$$7^{3x} = 25$$

v.
$$4^{5x} = 500$$

vi.
$$2^{x+1} = 150$$

vii.
$$6^{x-3} = 660$$

viii.
$$5^{2x+5} = 1554$$

ix.
$$2^{3x-8} = 25$$

20. i.
$$3^{2x} - 5(3^x) + 4 = 0$$

ii.
$$2^{2x+1} - 5(2^x) + 3 = 0$$

iii.
$$3^{2x+1} - 7(3^x) + 2 = 0$$

iv.
$$2^{2x+2} - 13(2^x) + 3 = 0$$

To solve the following equations you should use the change of base formula:

21. (a)
$$\frac{\log_5(7x+1)}{3} = \log_{125}(5x+11)$$

(b)
$$\log_3 x = \log_9(5x - 4)$$

(c)
$$\log_4 x + \log_2 x = \frac{3}{4}$$

(d)
$$\log_3(x+3) = \log_9(10x+6)$$

(e)
$$\log_2(x+1) + \log_8(x+1) = 4$$

(f)
$$\log_{25} 2 + \log_{25}(x+1) + \log_{125}(2x+2) = \frac{5}{6}$$

(g)
$$\log_3(x+5) + \log_2(x+5) = 4$$

(h)
$$\log_5(2x-1) - \log_{15}(2x-1) = 2$$

22. (a)
$$6\log_x 2 + \log_2 x - 5 = 0$$

(b)
$$2\log_x 3 - \log_3 x + 1 = 0$$

(c)
$$\log_5 x + 2 = 3\log_x 5$$

(d)
$$\log_4 x + 6 \log_x 4 + 5 = 0$$

(e)
$$\log_6 x + 2\log_x 6 = 3$$