< □ > < □ > < □ > < □ > < □ > < □ >

Logarithms and Exponential Functions Revision Series 2020

LEAMY

Stephen King

March 8, 2020

Leamy Maths

Logs ●0000000	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Э.

$$\log_a y = x \quad \rightarrow \quad a^x = y$$

Example: What is the value of $\log_2 16$?

 $\log_2 16 = x$

Logs ●0000000	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

'≣ ► ' ≣

$$\log_a y = x \quad \rightarrow \quad a^x = y$$

Example: What is the value of $\log_2 16$?

$$\log_2 16 = x$$
$$2^x = 16$$

Leamy Maths

Logs ●0000000	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

'≣ ► ' ≣

$$\log_a y = x \quad \to \quad a^x = y$$

Example: What is the value of $\log_2 16$?

$$\log_2 16 = x$$
$$2^x = 16$$
$$2^x = 2^4$$

Leamy Maths

Logs ●0000000	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

・ロト ・ 日 ト ・ ヨ ト ・

표 제 표

$$\log_a y = x \quad \rightarrow \quad a^x = y$$

Example: What is the value of $\log_2 16$?

$$og_2 16 = x$$
$$2^x = 16$$
$$2^x = 2^4$$
$$x = 4$$

So the value of $\log_2 16$ is 4.

Leamy Maths

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

 $log_a(xy) = log_a x + log_a y$ Example: What is the value of log₄ 2 + log₄ 32?

 $\log_4 2 + \log_4 32$

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

$$\begin{split} \log_a(xy) &= \log_a x + \log_a y \\ \text{Example: What is the value of } \log_4 2 + \log_4 32? \\ \log_4 2 + \log_4 32 \end{split}$$

$$= \log_4((2)(32))$$

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

 $log_{a}(xy) = log_{a} x + log_{a} y$ Example: What is the value of log₄ 2 + log₄ 32? $log_{4} 2 + log_{4} 32$ $= log_{4}((2)(32))$ $= log_{4} 64$

Leamy Maths

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling 00000000
Log Rules				

 $log_{a}(xy) = log_{a} x + log_{a} y$ Example: What is the value of $log_{4} 2 + log_{4} 32$? $log_{4} 2 + log_{4} 32$ $= log_{4}((2)(32))$ $= log_{4} 64$ $log_{4} 64 = x$

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Leamy Maths

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

 $log_a(xy) = log_a x + log_a y$ Example: What is the value of log₄ 2 + log₄ 32? $log_4 2 + log_4 32$ $= log_4((2)(32))$ $= log_4 64$ $log_4 64 = x$ $4^x = 64$

▲日▼▲雪▼▲回▼▲回▼ 回 ろるの

Leamy Maths

Logs ○●○○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

 $\log_2(xy) = \log_2 x + \log_2 y$ Example: What is the value of $\log_4 2 + \log_4 32$? $\log_{4} 2 + \log_{4} 32$ $= \log_4((2)(32))$ $= \log_4 64$ $\log_4 64 = x$ $4^{\times} = 64$ x = 3

So the value of $\log_4 2 + \log_4 32$ is 3.

Leamy Maths

Logs ○○●○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

$$\log_a(\frac{x}{y}) = \log_a x - \log_a y$$

Example: What is the value of $\log_3 54 - \log_3 2$?

 $\log_3 54 - \log_3 2$

Logs 00●00000	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

$$log_{a}(\frac{x}{y}) = log_{a} x - log_{a} y$$

Example: What is the value of log₃ 54 - log₃ 2?
$$log_{3} 54 - log_{3} 2$$

$$= \log_3(\frac{54}{2})$$

Leamy Maths

Logs 00●00000	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$$log_{a}(\frac{x}{y}) = log_{a} x - log_{a} y$$

Example: What is the value of log₃ 54 - log₃ 2?
$$log_{3} 54 - log_{3} 2$$
$$= log_{3}(\frac{54}{2})$$
$$= log_{3} 27$$

Logs 00●00000	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$log_{a}(\frac{x}{y}) = log_{a} x - log_{a} y$$

Example: What is the value of log₃ 54 - log₃ 2?
$$log_{3} 54 - log_{3} 2$$
$$= log_{3}(\frac{54}{2})$$
$$= log_{3} 27$$
$$log_{3} 27 = x$$

Leamy Maths

Logs ○○●○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$log_{a}(\frac{x}{y}) = log_{a} x - log_{a} y$$

Example: What is the value of $log_{3} 54 - log_{3} 2$?
$$log_{3} 54 - log_{3} 2$$
$$= log_{3}(\frac{54}{2})$$
$$= log_{3} 27$$
$$log_{3} 27 = x$$
$$3^{x} = 27$$

Leamy Maths

Logs ○○●○○○○○	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

イロト イ部ト イヨト イヨト 二日

$$log_{a}(\frac{x}{y}) = log_{a} x - log_{a} y$$

Example: What is the value of log₃ 54 - log₃ 2?
$$log_{3} 54 - log_{3} 2$$
$$= log_{3}(\frac{54}{2})$$
$$= log_{3} 27$$
$$log_{3} 27 = x$$
$$3^{x} = 27$$
$$x = 3$$

So the value of $\log_3 54 - \log_3 2$ is 3

Leamy Maths

Logs 000●0000	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

 $\log_a x^q = q \log_a x$ Example: What is the value of $2 \log_3 6 - \log_3 4$?

 $2\log_36-\log_34$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Leamy Maths

Logs 000●0000	Exponential Function	Modelling	Natural Log	Modelling
Log Rules				

$$log_a x^q = q log_a x$$

Example: What is the value of $2 log_3 6 - log_3 4$?
 $2 log_3 6 - log_3 4$

$$= \log_3 6^2 - \log_3 4$$

Leamy Maths

Logs ○○○●○○○○	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

$$log_a x^q = q log_a x$$

Example: What is the value of $2 log_3 6 - log_3 4$?
$$2 log_3 6 - log_3 4$$
$$= log_3 6^2 - log_3 4$$
$$= log_3 36 - log_3 4 = log_3 9$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Leamy Maths

Logs 000●0000	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

€ 900

$$log_a x^q = q log_a x$$

Example: What is the value of $2 log_3 6 - log_3 4$?
$$2 log_3 6 - log_3 4$$
$$= log_3 6^2 - log_3 4$$
$$= log_3 36 - log_3 4 = log_3 9$$
$$log_3 9 = x$$

Leamy Maths

Logs ○○○●○○○○	Exponential Function	Modelling 0000000	Natural Log	Modelling
Log Rules				

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$log_a x^q = q log_a x$$

Example: What is the value of $2 log_3 6 - log_3 4$?
$$2 log_3 6 - log_3 4$$
$$= log_3 6^2 - log_3 4$$
$$= log_3 36 - log_3 4 = log_3 9$$
$$log_3 9 = x$$
$$3^x = 9$$

Leamy Maths

Logs ○○○●○○○○	Exponential Function	Modelling 0000000	Natural Log	Modelling 00000000
Log Rules				

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

€ 900

$$log_a x^q = q log_a x$$

Example: What is the value of $2 log_3 6 - log_3 4$?
$$2 log_3 6 - log_3 4$$
$$= log_3 6^2 - log_3 4$$
$$= log_3 36 - log_3 4 = log_3 9$$
$$log_3 9 = x$$
$$3^x = 9$$
$$x = 2$$

So the value of
$$2 \log_3 6 - \log_3 4$$
 is 2

Leamy Maths

Logs	Exponential Function	Modelling	Natural Log	Modelling
0000000				

 ${\sf Question}\ 1$

 $\log_3(2x+5)=2$

Logs 0000●000	Exponential Function	Modelling	Natural Log	Modelling

Log Equations

Question 1

 $log_3(2x+5) = 2$ $3^2 = 2x+5$

(日)

Leamy Maths

Logs 0000●000	Exponential Function	Modelling	Natural Log	Modelling

Log Equations

Question 1

$$log_3(2x+5) = 2$$
$$3^2 = 2x+5$$
$$9 = 2x+5$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Leamy Maths

Logs ○○○○●○○○	Exponential Function	Modelling	Natural Log	Modelling

${\sf Question}\ 1$

$$log_3(2x+5) = 2$$
$$3^2 = 2x+5$$
$$9 = 2x+5$$
$$4 = 2x$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

Leamy Maths

Logs 0000●000	Exponential Function	Modelling	Natural Log	Modelling

${\sf Question}\ 1$

$$log_3(2x + 5) = 2$$

$$3^2 = 2x + 5$$

$$9 = 2x + 5$$

$$4 = 2x$$

$$2 = x$$

Leamy Maths

Logs ○○○○○●○○	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$\log_2 x + \log_2(x+2) = 3$$

Logs 00000●00	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$\log_2 x + \log_2(x+2) = 3$$
$$\log_2(x^2 + 2x) = 3$$

Logs Exp 000000000 000	onential Function Mo	odelling Nat	tural Log Mo	occocco
Question 3				

$$log_{2} x + log_{2}(x + 2) = 3$$
$$log_{2}(x^{2} + 2x) = 3$$
$$2^{3} = x^{2} + 2x$$

Leamy Maths

Logs ○○○○○●○○	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$log_{2} x + log_{2}(x + 2) = 3$$
$$log_{2}(x^{2} + 2x) = 3$$
$$2^{3} = x^{2} + 2x$$
$$8 = x^{2} + 2x$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

Leamy Maths

Logs ○○○○○●○○	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$log_2 x + log_2(x + 2) = 3$$
$$log_2(x^2 + 2x) = 3$$
$$2^3 = x^2 + 2x$$
$$8 = x^2 + 2x$$
$$x^2 + 2x - 8 = 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Leamy Maths

Logs 00000●00	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$og_{2} x + log_{2}(x + 2) = 3$$

$$log_{2}(x^{2} + 2x) = 3$$

$$2^{3} = x^{2} + 2x$$

$$8 = x^{2} + 2x$$

$$x^{2} + 2x - 8 = 0$$

$$(x + 4)(x - 2) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

Leamy Maths

Logs ○○○○○●○○	Exponential Function	Modelling	Natural Log	Modelling
Question 3				

$$og_{2} x + log_{2}(x + 2) = 3$$

$$log_{2}(x^{2} + 2x) = 3$$

$$2^{3} = x^{2} + 2x$$

$$8 = x^{2} + 2x$$

$$x^{2} + 2x - 8 = 0$$

$$(x + 4)(x - 2) = 0$$

$$x = -4 \quad x = 2$$

We cannot get the log of a negative, so therefore we disallow x = -4, so our only solution is x = 2

Leamy Maths

Logs 000000●0	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2\log_5 x - \log_5(x-1) = \log_5 4$$
Logs ○○○○○○●○	Exponential Function	Modelling	Natural Log	Modelling 00000000
Question	5			

$$2\log_5 x - \log_5(x-1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x-1) = \log_5 4$$

Logs ○○○○○○●○	Exponential Function	Modelling 0000000	Natural Log	Modelling
Question 5				

$$2\log_5 x - \log_5(x-1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x-1) = \log_5 4$$
$$\log_5 \left(\frac{x^2}{x-1}\right) = \log_5 4$$

Leamy Maths

Logs 000000●0	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$
$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$
$$\frac{x^2}{x - 1} = 4$$

Leamy Maths

Logs ○○○○○○●○	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$
$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$
$$\frac{x^2}{x - 1} = 4$$
$$x^2 = 4(x - 1)$$

Leamy Maths

Logs 000000●0	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$
$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$
$$\frac{x^2}{x - 1} = 4$$
$$x^2 = 4(x - 1)$$
$$x^2 = 4x - 4$$

١

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Leamy Maths

Logs 000000●0	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$
$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$
$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$
$$\frac{x^2}{x - 1} = 4$$
$$x^2 = 4(x - 1)$$
$$x^2 = 4x - 4$$
$$x^2 - 4x + 4 = 0$$

Leamy Maths

Logs ○○○○○○●○	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$

$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$

$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$

$$\frac{x^2}{x - 1} = 4$$

$$x^2 = 4(x - 1)$$

$$x^2 = 4x - 4$$

$$x^2 - 4x + 4 = 0$$

$$(x - 2)(x - 2) = 0$$

Leamy Maths

Logs ○○○○○○●○	Exponential Function	Modelling	Natural Log	Modelling
Question 5				

$$2 \log_5 x - \log_5(x - 1) = \log_5 4$$

$$\log_5 x^2 - \log_5(x - 1) = \log_5 4$$

$$\log_5 \left(\frac{x^2}{x - 1}\right) = \log_5 4$$

$$\frac{x^2}{x - 1} = 4$$

$$x^2 = 4(x - 1)$$

$$x^2 = 4x - 4$$

$$x^2 - 4x + 4 = 0$$

$$(x - 2)(x - 2) = 0$$

Leamy Maths

Logs 0000000●	Exponential Function	Modelling	Natural Log	Modelling
Change of	of Base			
Questi	on 16(b):			, in the second s

$$\log_3 x = \log_9(5x - 4)$$

・ロト・西ト・ヨト・ヨー うへぐ

Logs ⊃oooooo●	Exponential Function	Modelling 00000000	Natural Log	Modelling
Change of	Base			

Question 16(b):

$$\log_3 x = \log_9(5x - 4)$$
$$\log_3 x = \frac{\log_3(5x - 4)}{\log_3 9}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Logs ○○○○○○●	Exponential Function	Modelling	Natural Log	Modelling 00000000
Change o	of Base			
Questio	on 16(b):			

$$\log_3 x = \log_9(5x - 4)$$
$$\log_3 x = \frac{\log_3(5x - 4)}{\log_3 9}$$
$$\log_3 x = \frac{\log_3(5x - 4)}{2}$$

Leamy Maths

Logs ○○○○○○○●	Exponential Function	Modelling	Natural Log	Modelling
Change of	of Base			
Questio	on 16(b):			

$$\log_{3} x = \log_{9}(5x - 4)$$
$$\log_{3} x = \frac{\log_{3}(5x - 4)}{\log_{3} 9}$$
$$\log_{3} x = \frac{\log_{3}(5x - 4)}{2}$$
$$2\log_{3} x = \log_{3}(5x - 4)$$

イロト イヨト イヨト イヨト

æ

Leamy Maths

Logs 0000000●	Exponential Function	Modelling	Natural Log	Modelling
Change of	f Base			

 $\log_{3} x = \log_{9}(5x - 4)$ $\log_{3} x = \frac{\log_{3}(5x - 4)}{\log_{3} 9}$ $\log_{3} x = \frac{\log_{3}(5x - 4)}{2}$ $2\log_{3} x = \log_{3}(5x - 4)$ $\log_{3} x^{2} = \log_{3}(5x - 4)$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

Leamy Maths

Logarithms and Exponential FunctionsRevision Series 2020

Question 16(b):

Logs 0000000●	Exponential Function	Modelling	Natural Log	Modelling
Change o	f Base			
Questio	n 16(b):			

$$\log_{3} x = \log_{9}(5x - 4)$$
$$\log_{3} x = \frac{\log_{3}(5x - 4)}{\log_{3} 9}$$
$$\log_{3} x = \frac{\log_{3}(5x - 4)}{2}$$
$$2\log_{3} x = \log_{3}(5x - 4)$$
$$\log_{3} x^{2} = \log_{3}(5x - 4)$$
$$x^{2} = 5x - 4$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Leamy Maths

Logs ○○○○○○○●	Exponential Function	Modelling	Natural Log	Modelling 00000000
Change of	of Base			
Questio	on 16(b):			

$$log_{3} x = log_{9}(5x - 4)$$

$$log_{3} x = \frac{log_{3}(5x - 4)}{log_{3}9}$$

$$log_{3} x = \frac{log_{3}(5x - 4)}{2}$$

$$2 log_{3} x = log_{3}(5x - 4)$$

$$log_{3} x^{2} = log_{3}(5x - 4)$$

$$x^{2} = 5x - 4$$

$$x^{2} - 5x + 4 = 0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Leamy Maths

Logs ○○○○○○○●	Exponential Function	Modelling	Natural Log	Modelling
Change o	f Base			
Questio	n 16(b):			
	lo	$g_3 x = \log_9(5x)$	— 4)	
		lag (Ex	4)	

$$\log_{3} x = \frac{\log_{3}(5x - 4)}{\log_{3} 9}$$
$$\log_{3} x = \frac{\log_{3}(5x - 4)}{2}$$
$$2\log_{3} x = \log_{3}(5x - 4)$$
$$\log_{3} x^{2} = \log_{3}(5x - 4)$$
$$x^{2} = 5x - 4$$
$$x^{2} - 5x + 4 = 0$$
$$(x - 4)(x - 1) = 0$$
$$x = 4 \quad x = 1$$

Leamy Maths

A D N A B N A B N A B N

Introduction to the Exponential Function

The exponential function is used when a quantity grows or decays at a rate proportional to its current value.

The exponential function is used to model many situations and processes. Some of these include the growth of bacteria, radio carbon dating, depreciation and continuously compounding interest.

The basic exponential function is written as $y = e^{x}$.

Logs 00000000	Exponential Function ○●○	Modelling	Natural Log	Modelling

Properties

• Note that $e^x > 0$ for every value of x.

• As
$$x \to \infty$$
, $e^x \to \infty$ very fast!

• As
$$x \to -\infty$$
, $e^x \to 0$ very fast!

$$\blacktriangleright e^0 = 1$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Leamy Maths

4

4.5

5

5.5

イロト イロト イヨト イヨト

6

6.5

æ

Leamy Maths

0

0.5

Logarithms and Exponential FunctionsRevision Series 2020

1.5

ż

2.5

ż

3.5

Modelling ••••••• Natural Log

Modelling

Modelling with the Exponential Function

A certain fish population is believed to be growing exponentially. When first studied the fish population was 50,000. Now, five years later, it has increased to 75,000. If the hypothesis of exponential growth is valid, what will the population be three years from now?

The model $y = 50,000e^{.08019t}$ models this situation. We can use this model to make further predictions about the fish population.

Logs 00000000	Exponential Function	Modelling ○●○○○○○○	Natural Log	Modelling
$y = Ae^{rt}$				

We use the basic model $y = Ae^{rt}$ to describe many situations where a quantity grows or decays at a rate proportional to its current value.

$$y = Ae^{rt}$$

- A is the initial value.
- r is the growth/decay rate.
- t is time, the independent variable.

Note that $y = e^{rt}$, r > 0 is the exponential growth curve.

3

Leamy Maths

Note that $y = e^{rt}$, r < 0 is the exponential decay curve.

<ロト <問ト < 国ト < 国ト

3

Leamy Maths

Logs 00000000	Exponential Function	Modelling ○○○○●○○○	Natural Log	Modelling
$y = Ae^{rt}$				

A €100 investment gains value by continuously compounding at a rate of 4% annually. Create a model in the form $V = Ae^{rt}$, where V is the value of the investment (€), and t is time in years.

 $V = 100e^{.04t}$

(4) (日本)

- 1. How much will the investment be after 5 years?
- 2. How long will it take the investment to double?

▲ロト▲園ト▲目ト▲目ト 目 のへぐ

Leamy Maths

Logs Exponent 00000000 000	ntial Function Modelling	Natural Log	Modelling
$V = 100e^{.04t}$			

Logs 0000000	Exponential Function	Modelling ○○○○○○●○	Natural Log	Modelling
	A +			
$V = 100e^{.0}$	47			

 $V = 100e^{.04t}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Logs 00000000	Exponential Function	Modelling ○○○○○○●○	Natural Log	Modelling
$V = 100e^{.0}$	4 <i>t</i>			

 $V = 100e^{.04t}$ $V = 100e^{(.04(5))}$

◆□ ◆ ◆□ ◆ ▲□ ◆ ▲□ ◆

Logarithms and Exponential FunctionsRevision Series 2020

Leamy Maths

Logs 00000000	Exponential Function	Modelling ○○○○○○●○	Natural Log	Modelling
$V = 100e^{.0}$)4 <i>t</i>			

 $V = 100e^{.04t}$ $V = 100e^{(.04(5))}$ V = 100(1.2214)

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

Logs 00000000	Exponential Function	Modelling ○○○○○●○	Natural Log	Modelling
$V = 100\epsilon$.04 <i>t</i>			

 $V = 100e^{.04t}$ $V = 100e^{(.04(5))}$ V = 100(1.2214) V = 122.14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So, after 5 years the investment will be worth \in 122.14.

Logs 00000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling
V = 100e	04 <i>t</i>			

Logs 00000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling
$V = 100e^{.0}$	04 <i>t</i>			
1000				

 $200 = 100e^{.04t}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Logs 00000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling
V = 100	e ^{.04t}			

 $200 = 100e^{.04t}$ $2 = e^{.04t}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Logs 00000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling
$V = 100e^{.0}$)4 <i>t</i>			

 $200 = 100e^{.04t}$ $2 = e^{.04t}$ $Ln(2) = Ln(e^{.04t})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Logs 00000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling
V = 100e	e.04 <i>t</i>			

 $200 = 100e^{.04t}$ $2 = e^{.04t}$ $Ln(2) = Ln(e^{.04t})$ Ln(2) = .04t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Leamy Maths

Logs 0000000	Exponential Function	Modelling ○○○○○○●	Natural Log	Modelling 00000000
$V = 100e^{-1}$	04 <i>t</i>			

$$200 = 100e^{.04t}$$
$$2 = e^{.04t}$$
$$Ln(2) = Ln(e^{.04t})$$
$$Ln(2) = .04t$$
$$t = \frac{Ln(2)}{.04}$$

イロト イ部ト イヨト イヨト 二日

Leamy Maths

How long will it take the investment to double?

 $200 = 100e^{.04t}$ $2 = e^{.04t}$ $Ln(2) = Ln(e^{.04t})$ Ln(2) = .04t $t = \frac{Ln(2)}{.04}$ t = 17.33

◆ロト ◆昼 ト ◆臣 ト ◆臣 - の々ぐ

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log ●00000	Modelling
Properties				

$$y = Ln(x)$$
 means $x = e^y$

by definition.

- Since e^y > 0, Ln(x) only makes sense for x > 0, i.e., Ln(x) does not exist for x < 0.</p>
- Since $1 = e^0$ we have Ln(1) = 0

•
$$Ln(e^x) = x$$
 and $e^{Ln(x)} = x$

▲ロト▲聞と▲目と▲目と 目 ろくで

Э.

Leamy Maths

$$e^{x} = 10$$

イロト イポト イヨト イヨト

э

 $e^{x} = 10$ $Ln(e^{x}) = Ln(10)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

Leamy Maths

 $e^{x} = 10$ $Ln(e^{x}) = Ln(10)$ x = Ln(10)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Leamy Maths

 $e^{x} = 10$ $Ln(e^{x}) = Ln(10)$ x = Ln(10)x = 2.302585

・ロト・日本・日本・日本・日本・日本

Leamy Maths

Logs 0000000	Exponential Function	Modelling 0000000	Natural Log 000●00	Modelling
Example				
Solve for x				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Logs 0000000	Exponential Function	Modelling 0000000	Natural Log 000●00	Modelling
Example				

 $50e^{.1x} = 3000$

Logs 00000000	Exponential Function	Modelling	Natural Log ○○○●○○	Modelling 00000000
Example				

$$50e^{.1x} = 3000$$

 $e^{.1x} = 60$

Logs 00000000	Exponential Function	Modelling 0000000	Natural Log ○○○●○○	Modelling
Example				

$$50e^{.1x} = 3000$$

 $e^{.1x} = 60$
 $Ln(e^{.1x}) = Ln(60)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log ○○○●○○	Modelling
Example				

$$50e^{.1x} = 3000$$

 $e^{.1x} = 60$
 $Ln(e^{.1x}) = Ln(60)$
 $.1x = Ln(60)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Logs 0000000	Exponential Function	Modelling	Natural Log ○○○●○○	Modelling 00000000
Example				

$$50e^{.1x} = 3000$$
$$e^{.1x} = 60$$
$$Ln(e^{.1x}) = Ln(60)$$
$$.1x = Ln(60)$$
$$x = \frac{Ln(60)}{.1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Leamy Maths

Logs	Exponential Function	Modelling	Natural Log	Modelling
00000000		00000000	○○○●○○	00000000
Example				

$$50e^{.1x} = 3000$$

 $e^{.1x} = 60$
 $Ln(e^{.1x}) = Ln(60)$
 $.1x = Ln(60)$
 $x = \frac{Ln(60)}{.1}$
 $x = 40.9434456$

・ロト・日本・日本・日本・日本・日本

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log ○○○○●○	Modelling
Practice				

Solve the following equations:

- 1. $e^x = 20$
- 2. $e^x = -1$
- 3. $e^{3x} = 12$
- 4. $25e^{.3x} = 200$
- 5. $150e^{.0325x} = 600$

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log ○○○○○●	Modelling 00000000

Solutions

- 1. *x* = 2.996
- 2. No Solution because $e^x > 0$
- 3. *x* = 0.8283
- **4**. *x* = 6.931
- **5**. *x* = 42.655

$Y = Ae^{rt}$	

A laptop bought at the end of 2016 for $\in 1,100$ depreciates continuously in value at a rate of 25% a year. Assuming this can be modeled by the exponetial function;

Logs Ex 00000000 00	xponential Function	Modelling 00000000	Natural Log	Modelling ●○○○○○○○
$Y = Ae^{rt}$				

A laptop bought at the end of 2016 for $\in 1, 100$ depreciates continuously in value at a rate of 25% a year. Assuming this can be modeled by the exponetial function;

1. What will the laptop be worth at the end of 2018?

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ●○○○○○○○
$Y = Ae^{rt}$				

A laptop bought at the end of 2016 for $\in 1, 100$ depreciates continuously in value at a rate of 25% a year. Assuming this can be modeled by the exponetial function;

- 1. What will the laptop be worth at the end of 2018?
- During what year will the price of the laptop drop below €400?

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ●○○○○○○○
$Y = Ae^{rt}$				

A laptop bought at the end of 2016 for $\in 1, 100$ depreciates continuously in value at a rate of 25% a year. Assuming this can be modeled by the exponetial function;

- 1. What will the laptop be worth at the end of 2018?
- During what year will the price of the laptop drop below €400?

We can model this situation with the function $V = 1100e^{-.25t}$.

Logs Exponential Function	Modelling	Natural Log	Modelling ○●○○○○○○
$V = 1100e^{25t}$			

イロト イヨト イヨト イヨト

3

Logarithms and Exponential FunctionsRevision Series 2020

Leamy Maths

Logs 00000000	Exponential Function	Modelling 00000000	Natural Log	Modelling ○●○○○○○○
$V = 1100\epsilon$.—.25 <i>t</i>			

 $V = 1100e^{-.25(2)}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○●○○○○○○
V = 1100	25t			
v = 1100	Je			

 $V = 1100e^{-.25(2)}$ V = 1100(.606530659)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○●○○○○○○
V = 110	$0e^{25t}$			

 $V = 1100e^{-.25(2)}$ V = 1100(.606530659)V = 667.1837

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○●○○○○○○
V = 110	$0e^{25t}$			

 $V = 1100e^{-.25(2)}$ V = 1100(.606530659)V = 667.1837

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So, at the end of 2018, the laptop will be worth €667.18

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○●○○○○○
V = 1100 <i>e</i>	25 <i>t</i>			

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○●○○○○○
V = 1100)e ^{25t}			

 $400 = 1100e^{-.25t}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

 $400 = 1100e^{-.25t}$ $\frac{4}{11} = e^{-.25t}$

$$400 = 1100e^{-.25t}$$
$$\frac{4}{11} = e^{-.25t}$$
$$Ln(\frac{4}{11}) = Ln(e^{-.25t})$$

<ロト <回ト < 回ト < 回ト -

2

$$400 = 1100e^{-.25t}$$
$$\frac{4}{11} = e^{-.25t}$$
$$Ln(\frac{4}{11}) = Ln(e^{-.25t})$$
$$Ln(\frac{4}{11}) = -.25t$$

Leamy Maths

$$400 = 1100e^{-.25t}$$
$$\frac{4}{11} = e^{-.25t}$$
$$Ln(\frac{4}{11}) = Ln(e^{-.25t})$$
$$Ln(\frac{4}{11}) = -.25t$$
$$t = \frac{Ln(\frac{4}{11})}{-.25}$$

Leamy Maths

$$400 = 1100e^{-.25t}$$
$$\frac{4}{11} = e^{-.25t}$$
$$Ln(\frac{4}{11}) = Ln(e^{-.25t})$$
$$Ln(\frac{4}{11}) = -.25t$$
$$t = \frac{Ln(\frac{4}{11})}{-.25}$$
$$t = 4.04$$

<ロト <回ト < 回ト < 回ト -

2

L

Logs 00000000	Exponential Function	Modelling 0000000	Natural Log 000000	Modelling ○○○●○○○○

A certain fish population is believed to be growing exponentially. When first studied the fish population was 50,000. Now, five years later, it has increased to 75,000. If the hypothesis of exponential growth is valid, what will the population be three years from now?

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○●○○○○

A certain fish population is believed to be growing exponentially. When first studied the fish population was 50,000. Now, five years later, it has increased to 75,000. If the hypothesis of exponential growth is valid, what will the population be three years from now?

We can write this model as $Y = 50,000e^{rt}$, where Y is the fish population and t is time in years. We do not know what r is yet.

A (10) N (10) N (10)

Logs 00000000	Exponential Function	Modelling 0000000	Natural Log 000000	Modelling ○○○●○○○○

A certain fish population is believed to be growing exponentially. When first studied the fish population was 50,000. Now, five years later, it has increased to 75,000. If the hypothesis of exponential growth is valid, what will the population be three years from now?

We can write this model as $Y = 50,000e^{rt}$, where Y is the fish population and t is time in years. We do not know what r is yet.

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.
00000000 000	00000000	000000	0000000
$Y = 50,000e^{rt}$			

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○●○○○
Y = 50, 0)00 <i>e^{rt}</i>			

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

 $75,000 = 50,000e^{r(5)}$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

Logs 00000000	Exponential Function	Modelling 0000000	Natural Log	Modelling ○○○○●○○○
Y = 50,	000 <i>e^{rt}</i>			

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

 $75,000 = 50,000e^{r(5)}$ $\frac{3}{2} = e^{5r}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○●○○○
V - 50	$000 \circ rt$			

50,000e

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

$$75,000 = 50,000e^{r(5)}$$
$$\frac{3}{2} = e^{5r}$$
$$Ln(\frac{3}{2}) = Ln(e^{5r})$$

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○●○○○
	and rt			

$= 50,000e^{\prime\prime}$

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

$$75,000 = 50,000e^{r(5)}$$
$$\frac{3}{2} = e^{5r}$$
$$Ln(\frac{3}{2}) = Ln(e^{5r})$$
$$Ln(\frac{3}{2}) = 5r$$

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○●○○○
				·
	ooo rt			

$Y = 50,000e^{rt}$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

$$75,000 = 50,000e^{r(5)}$$
$$\frac{3}{2} = e^{5r}$$
$$Ln(\frac{3}{2}) = Ln(e^{5r})$$
$$Ln(\frac{3}{2}) = 5r$$
$$r = \frac{Ln(\frac{3}{2})}{5}$$

Leamy Maths

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○●○○○
				·
	and t			

$Y = 50,000e^{rt}$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

We do know that when t = 5, Y = 75,000. We can use this information to solve for r and complete our model.

$$75,000 = 50,000e^{r(5)}$$
$$\frac{3}{2} = e^{5r}$$
$$Ln(\frac{3}{2}) = Ln(e^{5r})$$
$$Ln(\frac{3}{2}) = 5r$$
$$r = \frac{Ln(\frac{3}{2})}{5}$$
$$r = .08109$$

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○○●○○
Y = 50, 0	000 <i>e</i> ^{.08109}			

 $Y = 50,000e^{.08109(8)}$

イロト イヨト イヨト イヨト

Ξ.

 $Y = 50,000e^{.08109(8)}$ $Y = 50,000e^{(.648744173)}$

æ

 $Y = 50,000e^{.08109(8)}$ $Y = 50,000e^{(.648744173)}$ Y = 50,000(1.913136751)

・ロト ・四ト ・ヨト

æ

 $Y = 50,000e^{.08109(8)}$ $Y = 50,000e^{(.648744173)}$ Y = 50,000(1.913136751)

・ロト ・四ト ・ヨト

э

Y = 95656.8375

 $Y = 50,000e^{.08109(8)}$ $Y = 50,000e^{(.648744173)}$ Y = 50,000(1.913136751)Y = 95656.8375

So in 3 years, (8 years since time = 0), the population of fish will be around 95657

Logs 00000000	Exponential Function	Modelling	Natural Log	Modelling ○○○○○●○
Practice				

- An investment of €505 gains value from continuously compounding interest at a rate of 3¹/₂%. What will the investment be worth after 5 years? When will it be worth over €1000?
- The population of the world in 1950 was 2.518 billion and in 1960 it was 3.021 billion. Assuming exponential growth, derive a formula for the population. What is the expected population of the world in 2012 using this data.
- 3. A car was bought three years ago for €25,000. It is now valued at €15,000. Assuming that the value is depreciating exponentially, estimate the value one year from now to the nearest euro.

Logs	Exponential Function	Modelling	Natural Log	Modelling
				0000000

Solutions

3.
$$\blacktriangleright$$
 V = 25000 $e^{-0.1703t}$

▶ €12,650.24

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Leamy Maths