

2 Functions

## 2.1 Introduction

1. Which of the following relations are functions?











2. State whether the following functions injective, surjective, bijective or neither.

## 2.2 Composition of Functions

1.  $f: x \rightarrow : 2x - 1$  and  $g: x \rightarrow 3 - 5x$  are two functions. Find i. f(4)ii. gf(4)iii. fg(-1)iv. gf(x). For what value of x is fg(x) = 25? 2. If  $f(x) = x^2 - 1$  and g(x) = 3x + 2, find the value of each of the following: i. f(2)ii. gf(2)iii. g(4)iv. fg(4)v.  $f^2(3)$ vi.  $g^2(3)$ 

- vii. gf(-5)
- viii.  $fg(\frac{2}{3})$
- 3. If f(x) = 4x 3, find
  - i.  $f^2x$
  - ii.  $f^3x$
  - iii.  $f^4x$ .

Hence, find an expression for  $f^n(x)$  in terms of n.

## 2.3 Inverse Functions

1. Find the inverse of each of the following functions.

i. 
$$f(x) = 2x$$
  
ii.  $g(x) = x + 4$   
iii.  $h(x) = 2x - 1$   
iv.  $k(x) = 3x + 5$   
v.  $f(x) = 2 - 3x$   
vi.  $g(x) = \frac{4}{x}, x \neq 0$   
vii.  $h(x) = \frac{1}{x-2}, x \neq 2$   
viii.  $k(x) = \frac{x-5}{x}, x \neq 0$   
ix.  $g(x) = \frac{2x}{3x-2}, x \neq \frac{2}{3}$   
x.  $f(x) = 1 + \frac{1}{x}, x \neq 0$ 

- 2. Find the inverse function of each of the following by completing the square:
  - i.  $f(x) = x^2 + 6x 10, x \ge -3$ ii.  $f(x) = x^2 - 4x - 5, x \ge 2$ iii.  $f(x) = x^2 - 10x + 13, x \ge 5$ iv.  $f(x) = x^2 + 8x + 8, x \ge -4$
- 3. Given  $f(x) = \frac{4-x}{3}, -1 \le x \le 4$ . Sketch the graph of the given function and on the same set of axes, sketch the graph of the inverse function. State the domain and range of the inverse function.
- 4. Let  $f : A \to R$ ,  $f(x) = \sqrt{2-x}$ . If A is the set of all real values of x for which f(x) is defined, find A.