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Introduction

If we have the function f (x) = x3, we say that the derivative of
this function is:

f ′(x) = 3x2

If we start with the function f ′(x) = 3x2, we can then say that the
antiderivative of this function is:

f (x) = x3
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Integration

Antiderivatives can be calculated by a process called integration,
which can be seen as a form of reverse differentiation.
The symbol ∫

f (x)dx

called the indefinite integral, is used to represent all
antiderivatives of f (x).
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Integration of Basic Functions

I
∫
xndx = xn+1

n+1 + c , n 6= −1
(Add one to the power, then put it over the new power)
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Some Examples

∫
(2x3 + 3x2 − 2x + 1)dx

=
2x4

4
+

3x3

3
− 2x2

2
+ 1x + c

=
x4

2
+ x3 − x2 + x + c
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Example

∫
(x3 + 5x − 4)dx

x4

4
+

5x2

2
− 4x + c
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Practice

1.
∫

(x2 + 2x + 1)dx

2.
∫

(3x2 + 4x − 7)dx

3.
∫

(4x3 − 12x + 17)dx

4.
∫

(3x − x4)dx
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Answers

1. x3

3 + x2 + x + c

2. x3 + 2x2 − 7x + c

3. x4 − 6x2 + 17x + c

4. 3x2

2 −
x5

5 + c
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∫ 1

x3
dx

As in differentiation, we must rewrite this before we can integrate
it.

→
∫
x−3dx

=
x−2

−2
+ c

This can be rewritten as: − 1

2x2
+ c
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Practice

1.
∫ 1

x4
dx

2.
∫

(
1

x2
+

2

x3
)dx

3.
∫ 3

x2
dx
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Sometimes we have to rewrite, rearrange or factorise a function
before we can integrate it. For Example:∫ (

4x3 − 3x2 + x

x

)
dx

We split this function up, then tidy up before integrating.

=

∫ (
4x3

x
− 3x2

x
+

x

x

)
dx

=

∫
(4x2 − 3x + 1)dx

This function is now ready to integrate.

=
4x3

3
− 3x2

2
+ x + c
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Sometimes we can rearrange by factorising. For example:∫
x2 + 3x + 2

2x + 4
dx

We can factorise this function and then tidy it up before integrating

=

∫
(x + 2)(x + 1)

2(x + 2)
dx

=

∫
x + 1

2
dx =

∫
(
x

2
+

1

2
)dx

This can now be integrated to:

x2

4
+

x

2
+ c
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Definite Integrals

Given a function f (x) and an interval[a,b], the definite integral of
f (x) over that interval is given by:∫ b

a f (x)dx = F (b)− F (a)

where F is the antiderivative of f .
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Example

∫ 2
1 (3x2 + 4x)dx

=

[
3x3

3
+

4x2

2

]2
1

=
[
x3 + 2x2

]2
1

We fill in each limit for x and subtract the results.(
(2)3 + 2(2)2

)
−
(
(1)3 + 2(1)2

)
(16)− (3) = 13∫ 2

1 (3x2 + 4x)dx = 13
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Trigonometric Integration

∫
a sin(bx)dx ⇒ −a cos(bx)

b
+ c

and∫
a cos (bx)dx ⇒ a sin (bx)

b
+ c

For example: ∫
3sin(7x)dx

⇒ −3 cos (7x)

7
+ c
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Products to Sums Formulae

There is no product rule for integration, so sometimes we use the
formulas on page 15 of the log tables.
For example:

∫
sin(3x) cos(2x)dx

We use the formula:

2 sinA cosB = sin(A + B) + sin(A− B)
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2 sinA cosB = sin(A + B) + sin(A− B)

∫
sin(3x) cos(2x)dx =

∫
1

2
(sin(3x + 2x) + sin(3x − 2x)) dx

=

∫
1

2
(sin(5x) + sin(x)) dx

= −cos 5x

10
− cos x

2
+ c
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Average Value of a Function

To get the average value of a function f (x) on any interval
a ≤ x ≤ b we use the formula:

1

b − a

∫ b

a
f (x)dx
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Average Value

Example: Find the average value of f (x) = 3x2 − 5
on 1 ≤ x ≤ 3
Average Value:

=
1

3− 1

∫ 3

1
(3x2 − 5)dx

=
1

2
|x3 − 5x |31

=
1

2

(
((3)3 − 5(3))− ((1)3 − 5(1))

)
=

1

2
(16)

= 8
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Finding Areas by Integration

We can use integration to find the areas bounded by a function
and the axes. For example we can find areas such as the shaded
region below
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Example

To calculate such an area it can be solved by evaluating∫ 4
1 (−x2 + 5x)dx
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Calculating the Area

∫ 4

1
(−x2 + 5x)dx

=

∣∣∣∣−x33
+

5x2

2

∣∣∣∣4
1

=

(
−(4)3

3
+

5(4)2

2

)
−
(
−(1)3

3
+

5(1)2

2

)
=

(
−64

3
+ 40

)
−
(
−1

3
+

5

2

)
= 16.5
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