Concept MCQs 4

1 ID 35- Rational Inequalities

- 1. What is the correct next step in solving the following inequality?
 - (a) $(x-5)^2 \cdot \frac{(3x+4)}{x-5} > (x-5)^2 \cdot 2$ (b) $(x-5) \cdot \frac{(3x+4)}{x-5} > (x-5) \cdot 2$ (c) $(x+5) \frac{(3x+4)}{x-5} > (x+5) \cdot 2$
 - (d) I don't know yet.
- 2. In solving the following inequality

 $\frac{x-5}{x-1} \le 3, x \ne 1$

 $\frac{3x+4}{x-5} > 2, x \neq 5$

why must one multiply both sides by $(x-1)^2$, rather than (x-1):

$$(x-1)^2 \frac{(x-5)}{x-1} \le 3(x-1)^2$$

 $\frac{\frac{3}{x+1}}{\frac{2}{x-2}}$

- (a) Because (x 1) is negative and we cannot multiply by a negative in inequalities.
- (b) $(x-1)^2$ is definitely positive, so the inequality sign remains facing the same way.
- (c) One should multiply both sides by (x-1) to keep it simpler.
- (d) I don't know yet

2 ID 4 : Complex Algebraic Fractions

- 1. What is
 - (a) $\frac{6}{x^2 x 2}$
 - (b) $\frac{3x+3}{2x-4}$
 - (c) $\frac{3x-6-2x+4}{x^2-x-2}$

- (d) $\frac{3x-6}{2x+2}$ *
- (e) I don't know yet.
- 2. What is $\frac{x^2+3x-4}{5x+20}$ in its simplest form?
 - (a) $\frac{x+4}{5}$
 - (b) $\frac{x+1}{5}$
 - (c) $\frac{x-1}{5}$
 - (d) I don't know yet.
- 3. What is $\frac{4x^2-9}{2x^2+5x+3}$ in its simplest form?
 - (a) $\frac{2x-3}{x+1}$

 - (b) $\frac{2x+3}{x-1}$ () $4r^{2}$

(c)
$$\frac{4x-9}{2x^2+5x+3}$$

(d) I don't know yet.

ID 32 : Simultaneous Equations : One Linear and One Non-3 Linear

1. What is a correct procedure for solving the following simultaneous equations:

$$\begin{aligned} x+y &= 7\\ x^2+y^2 &= 25 \end{aligned}$$

- (a) $x^2 + (7+x)^2 = 25$ (b) $(7-y)^2 + y^2 = 25$ (c) $(7+y)^2 + y = 7$
- (d) I don't know
- 2. Which of the following substitutions is correct when solving the simultaneous equations:

$$x^{2} + y^{2} + 2x - 4y + 3 = 0$$
$$x - y + 3 = 0$$

(a) $(y-3)^2 + y^2 + 2(y-3) - 4y + 3 = 0$ (b) $x^2 + (x+3)^2 + 2x - 4y + 3 = 0$ (c) $x^{2} + (x-3)^{2} + 2x - 4(x-3) + 3 = 0$ (d) $(y-3)^2 + y^2 + 2x - 4y + 3 = 0$ (e) I don't know.

ID 22: Cubic Equations: Unknown Co-Efficients Using Factors 4

- 1. If $x^3 + 2x^2 + px^2 + 3x p + r = x^3 + 4x^2 + 3x + 5$, what are correct values for p and r?
 - (a) p = 4, r = 5(b) p = 4, r = 9(c) p = 2, r = 3(d) p = 2, r = 7

(e) I don't know yet.

2. $x^2 + ax + b$ is a factor of $x^3 + px + q$. Which of the identities below is true, considering the following long division method:

		-a	x		
+q	+px	$+0x^{2}$	x^3	+ax +b)	x^2
	+bx)	$+ax^2$	$-(x^{3})$		
+q	+(p-b)x	$-ax^2$			
-ab)	$-a^2x$	$-(-ax^{2})$			
-	0				

- (a) $q = ab, p b = a^2$
- (b) $q = -ab, p b + a^2 = 0$
- (c) $q + ab = 0, p b = a^2$
- (d) I don't know yet.

5 ID 37 : Abstract Inequalities

- 1. Which of the identities below is true for all $x \in R$?
 - (a) $x \ge 0$
 - (b) $x + 1 \ge 0$
 - (c) $x \le 0$
 - (d) $(x-1)^2 \ge 0$
 - (e) I don't know yet.
- 2. Which of the following identities is true for all $a, b \in R$
 - (a) $a^2 b^2 \ge 0$
 - (b) $a^2 + b^2 \ge 2ab$
 - (c) $a^{"} \ge b^2$
 - (d) I don't know yet.
- 3. Which of the following identities is true for all a > b, where $a, b \in R$
 - (a) a b > 0
 - (b) a + b > 0
 - (c) b a > 0
 - (d) I don't know