

Exponential Functions

- 1. Solve the following exponential equations:
 - (a) $e^x = 10$
 - (b) $e^x = 25$
 - (c) $e^{3x} = 150$
 - (d) $e^{7x} = 675$
 - (e) $5e^x = 30$
 - (f) $4e^{2x} = 32$
 - (g) $17e^{0.8x} = 124$
 - (h) $12e^{x+1} = 50$
 - (i) $0.75e^{2x-5} = 56$
 - (j) $5 + e^x = 24$
 - (k) $12 + 8e^{5x} = 17$
 - (l) $15 + 10e^{0.35x-2} = 100$
 - (m) $21 + 0.7e^{5x+9} = 1245$
- 2. A $\in 100$ investment gains value by continuously compounding at a rate of 4% annually. Create a model in the form $V = Ae^{rt}$, where V is the value of the investment (\in), and t is time in years.
 - (a) How much will the investment be after 5 years?
 - (b) How long will it take the investment to double?
- 3. A laptop bought at the end of 2009 for €1,100 depreciates continuously in value at a rate of 25% a year. Assuming this can be modeled by the exponetial function;
 - (a) What will the laptop be worth at the end of 2011?
 - (b) During what year will the price of the laptop drop below $\in 400$
- 4. An investment of \in 505 gains value from continuously compounding interest at a rate of $3\frac{1}{2}\%$.
 - (a) What will the investment be worth after 5 years?
 - (b) When will it be worth over $\in 1000?$

5. In the year 2000, the population of the world was 6.070 Billion ; in 2015, it was 7.3 Billion.

Use this information to create a model in the form $Y = Ae^{rt}$, where Y represents the population in Billions, and t is time in years.

Assuming a model of exponential growth estimate the global population in

- (a) 2020
- (b) 2050
- (c) When will the world population reach 10 Billion?
- 6. A car was bought three years ago for $\in 25,000$. It is now valued at $\in 15,000$. Assuming that the value is depreciating exponentially, estimate the value one year from now to the nearest euro.
- 7. A new born baby gains weight at a rate proportional to its weight during the first weeks of it's life. A baby weighing 3.6kg at birth weighs 3.72kg after one week.
 - (a) Estimate its weight at three weeks.
 - (b) After how many weeks will the baby weigh 5kg?
- 8. The value of a piece of equipment is declining exponentially according to a function of the form

$$V = V_0 e^{-rt}$$

where V equals the value of the equipment in euro and t equals the age of the equipment in years. When the equipment was 3 years old, its value was \in 520,000. When it was 7 years old, its value was \in 130,000. *VIDEO*

- (a) What will the equipment be worth when it is 10 years old?
- 9. An online dating app had 2.5 million users at the end of 2012, and 6.5 million users at the end of 2015. We want to model this growth.
 - (a) Assuming the growth is exponential, create an exponential model in the form $Y = Ae^{rt}$, where Y is the number of users (in millions) and t is time in years.
 - (b) Using this model, how many users will the dating app have at the end of 2016?
 - (c) Using this model, by the end of what year do we expect the dating app to have over 20 million users?
- 10. A Petri dish initially contains a sample of 500 cells. The number of cells doubles in three hours. Using a model of exponential growth.
 - (a) Find a formula for the number N of cells present t hours after the initial time.
 - (b) How many cells will there be after 5 hours?
 - (c) How long does it take the number of cells to reach 10000?

