

11 Induction and Binomial Theorem

11.1 Series Proofs

1. $1 + 2 + 3 + \dots + n = \frac{n}{2}(n+1)$ 2. $2 + 4 + 6 + \dots + 2n = n(n+1)$ 3. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ 4. $1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n}{3}(n+1)(n+2)$ 5. $2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 2$ 6. $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2}{4}(n+1)^2$ 7. $1 + 2.2 + 3.2^2 + \dots + 2^{n-1} = (n-1)2^n + 1$ 8. $\sum_{n=1}^n n(n+2) = \frac{n(n+1)(2n+7)}{6}$

11.2 Divisibility Proofs

1. Prove by induction that $11^n - 6$ is divisible by 5 for $n \in \mathbb{N}$

- 2. Prove by induction that $5^n 1$ is divisible by 4 for $n \in \mathbb{N}$
- 3. Prove by induction that $3^{2n} 1$ is divisible by 8 for $n \in \mathbb{N}$
- 4. Prove by induction that $8^n 3^n$ is divisible by 5 for $n \in \mathbb{N}$
- 5. Prove by induction that $7^n + 4^n + 1$ is divisible by 6 for $n \in \mathbb{N}$
- 6. Prove by induction that $4^{n+1} + 5^{2n-1}$ is divisible by 21 for $n \in \mathbb{N}$
- 7. Prove by induction that $9^n 1$ is divisible by 8 for $n \in \mathbb{N}$

11.3 Inequality Proofs

- 8. Prove by induction that $2^{n+1} > n^2$ for $n \in \mathbb{N}$
- 9. Prove by induction that $2^n > 2n$ for $n \ge 3, n \in \mathbb{N}$
- 10. Prove by induction that $n^2 > 2n + 3$ for $n \ge 4, n \in \mathbb{N}$
- 11. Prove by induction that $3^n > n^2$ for $n \ge 2, n \in \mathbb{N}$
- 12. Prove by induction that $n! > 2^n$ for $n \ge 4, n \in \mathbb{N}$
- 13. Prove by induction that $(n+1)! \ge 2^n$ for $n \in \mathbb{N}$

11.4 Binomial Theorem

- 1. Expand the following using the binomial theorem;
 - (a) $(1+x)^4$
 - (b) $(1+a)^5$
- 2. Write down the first three terms of the expansions of the following:
 - (a) $(1+2x)^8$
 - (b) $(a 3x)^5$
 - (c) $(2a-b)^5$
- 3. What is the fifth term in the expansion of $(1 \frac{2}{x})^8$?
- 4. What is the middle term in the expansion of $(3 \frac{x}{3})^8$?
- 5. What is the coefficient of a^3 in the expansion of $(2 + a)^5$?
- 6. What is the coefficient of x^4 in the expansion of $(2-\frac{x}{2})^5$?
- 7. Find the coefficient of x^5 in the expansion of $(2x^2 + \frac{1}{x})^7$

11.5 Exam Questions

- 1. **2016 Paper 1** Prove by induction that $8^n - 1$ is divisible by 7 for all $n \in \mathbb{N}$
- 2. 2014 Paper 1
 - (a) Prove, by induction, that the sum of the first *n* natural numbers, $1+2+3+\ldots+n$, is $\frac{n(n+1)}{2}$.
 - (b) Hence, or otherwise, prove that the sum of the first n even natural numbers, $2+4+6+\ldots+2n$, is n^2+n
 - (c) Using the results from part form (a) and (b) above, find an expression for the sum of the first n odd natural numbers in its simplest form.

3. 2012 Paper 1

- (a) Prove, by induction, the formula for the sum of the first *n* terms of a geometric series. That is, prove that, for $r \neq 1$: $a + ar + ar^2 + ... + ar^{n-1} = \frac{a(1-r^n)}{1-r}$
- (b) By writing the recurring parts as an infinite geometric series, express the following number as fraction of integers: $5.2\dot{1} = 5.212121212...$
- 4. 2014 Sample Paper 1
 - (a) i. Prove by induction that, for any n, the sum of the first n natural numbers is $\frac{n(n+1)}{2}$
 - ii. Find the sum of all the natural numbers from 51 to 100, inclusive.
 - (b) Given that $p = log_c x$, express $log_c \sqrt{x} + log_c(cx)$ in terms of p.

11 Solutions

11.1 Proofs

1. NO SOLUTIONS AVAILABLE

11.4 Binomial

- 1. (a) $1 + 4x + 6x^2 + 4x^3 + x^4$ (b) $1 + 5a + 10a^2 + 10a^3 + 5a^4 + a^5$
- 2. (a) $1 + 16x + 112x^2$
 - (b) $a^5 15a^4x + 90a^3x^2$
 - (c) $32a^5 80a^4b + 80a^3b^2$
- 3. $\frac{1120}{x^4}$
- 4. $70x^4$
- 5. 40
- 6. $\frac{5}{8}$
- 7. 560

11.5 Exam Questions

- 1. Prove
- 2. (a) Prove
 - (b) Prove
 - (c) n^2
- 3. (a) prove
 - (b) $\frac{172}{33}$
- 4. (a) i. Prove ii. 3375

(b) $\frac{3}{2}p + 1$

